Table – 1 Some selected compounds of Coumarin with Pharmacological and Industrial properties

Substrates	Properties	Ref
	Anticoagulant	16,17
O Me Me Me	Anticoagulant	16,17
OH Et	Hypo epidemic1	17
R ⁵ R ⁵ R ²	Anti allergic	17a
R ¹ CO ₂ Et	Anti inflammatory	18
O O O O O O O O O O O O O O O O O O O	Anti hypertension	19

 ${\sf Table-1\ Some\ selected\ compounds\ of\ Coumarin\ with\ Pharmacological\ and\ Industrial\ properties}$

Substrates	Properties	Ref
O Me Me Ph	Anti inflammatory	20
O—CH ₂ CH ₂ —N	Schistomiacide	20
O Me Me	Metamorphosis activity of insect	21
Me Me O O	Hypertensive	22
N—CH ₂ Ph	Hypertensive	22
O OR OR OR	Hypertensive	22

Table – 1 Some selected compounds of Coumarin with Pharmacological and Industrial properties

Substrates	Properties	Ref
NO ₂ X= O or S	Anti tubercular	23
O Ph Me	Anti coagulant	23a
OH OH	Anti inflammatory & Anti microbial	24,25
MeO O O O		

Substrates	Products	Ref
CO ₂ Et O O CO ₂ Et	CO ₂ Et	63
CO ₂ Et OZnBr	H _{IIIII} CO ₂ Et	65
MeO O O Br CO ₂ Et	MeO MeO $R=H$ $R=Me$	66

Table

MeO O O O R R R=Me R=H	Br CO ₂ Et	MeO MeO $R=H$ $R=Me$	66
MeO O O Br	Et CO ₂ Et	CO ₂ Et Me Et	66
R=Me R=H		R R= H R=Me	

Substrates		Products	Ref
R 8 0 2 0 R= H CHO R= OMe	Br CO ₂ Et	R O O O O O O O O O O O O O O O O O O O	67
		EtO OH R1	
		R^1 = Me, Et, CHMe ₂ CH	
	_	R= H, Me	
R 8 0 2 0 0 R=H CHO	Br H ₃ C	CH CCO ₂ Et	67
R= OMe		R CO ₂ Et	
		HO CO ₂ Et	
		R O R1 R3 R3 R2	
		R=R ² =H, R ³ =CMe ₂ CO ₂ Et R=R ³ =H, R ² =CMe ₂ CO ₂ Et R=OMe, R ¹ =R ³ =CMe ₂ CO ₂ Et, R ₂ =H	

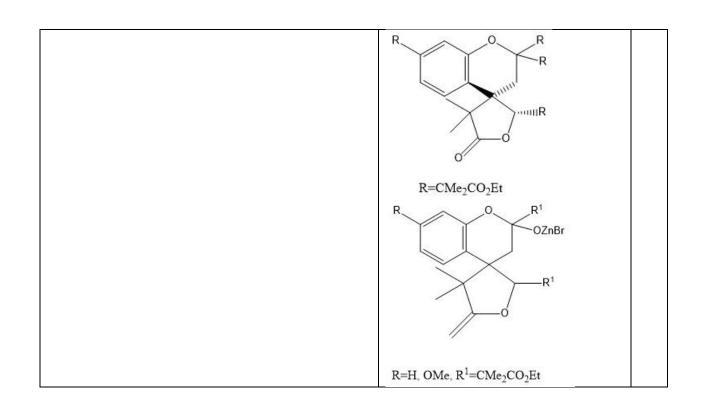


Table -3 Selected Examples of Reformatsky Reaction with Coumarins/uncommon electrophiles

Substrates	Products	Ref
Ph Me Br CO ₂ Et	Ph Me Me NH CO ₂ Et	69
Ph Br CO ₂ Et	Ph Me Ph N Ph Ph Me CO ₂ Et	69
R ² ////////////////////////////////////	R ¹ R ² IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70
	Mellining H	
OAc OAc Br CO ₂ Et	O OH	71
	N R	

Table -3 Selected Examples of Reformatsky Reaction with Coumarins/uncommon electrophiles

Substrates	Products	Ref
NH CO ₂ Et	HO CO ₂ H	77
	EtO ₂ C R R CO ₂ Et	
Ph CO ₂ Et	Ph—OH OH	72
	Ph P	
R ¹ CO ₂ Et	R^1	73
R^1 O R^1 R^2 Br CO_2Et	R ¹ O R ¹ R ² OH R	73

Table -3 Selected Examples of Reformatsky Reaction with Coumarins/uncommon electrophiles

Substrates	Products	Ref
C^2 — CN CO_2 Et	CMe ₂ CO ₂ Et	74
$RCH = N(O) R^{7} R^{2}CR^{3} BrCO_{2} R^{4}$		
	R^{1} R^{1} R^{3} R^{3}	75
	R= Me. R' = p-OMe-C ₆ H ₄ or, R= Me, Et, CHMe ₂ , CHPh ₂ , R' = Ph R^2 = R^3 = H, R^4 = Et/, CMe ; R^2 = R^3 = Me, R^4 = Et	
O NRR¹ BrCR²R³CN/Zn	OH-(CH ₂) ₄ CH(NRR ¹)CR ² R ³ CN $R = Me. R' = p-OMe-C_6H_4$ or, R= Me, Et, CHMe ₂ , CHPh ₂ , R'= Ph $R^2 = R^3 = H, R^4 = Et/, CMe$	75
CHO RCHBrC= CR ¹	R=Me. R'=p-OMe-C ₆ H ₄ or, R=Me, Et, CHMe ₂ , CHPh ₂ , R'=Ph	75

Table -4 Selected Examples of Grignard Reaction with Coumarins

Substrates	Products	Ref
MeO O O	R^2 R R R R	101, 102
RMgX R= Me, Et, Me ₂ CH ₂ , Ph, P-anisyl	R= Ph, R ¹ = H ₁ R2= MeC ^{1/} (OH)Ph R= P-Anisyl, R ¹ H R2=MeC(OH)Anisyl-P R,R ₁ = Me, R ₂ =MeC ^{1/} =C ^{2/} (H ₂) R=Et, R ¹ =Me, R ² =MeC ^{1/} (OH)Et R=Pr ¹ , R ¹ = Me, R ² =MeC ^{1/} , C ^{2/} Me ₂ R=(CH ₂) ₂ Ph, R ¹ = Me R ² = MeC ^{1/} (OH)(CH ₂) ₂ Ph R= Ph, R ¹ = Me, R ² = MeC(OH)Ph R=P-Anisyl, R ¹ = Me R2=P-AnisylC ^{1/} =C ^{2/} H ₂	
MeO Me	MeO OH MeO OH	101
	MeO O R	
	MeO OH OH	

Table -4 Selected Examples of Grignard Reaction with Coumarins

Substrates	Products	Ref
MeO O O	MeO R	102
Me	R	
RMgX R= Me, Et,i-Pr,Ph, p-Anisyl	R= Me, R ¹ =Me=CH ₂ R=Et, R ¹ =MeC(OH)Et R= CHMe ₂ , R ₁ =Me=C(Me) ₂ R=Ph, R ₁ =MeC(OH)Ph R=p-Anisyl, R ¹ = p-Anisyl C=CH ₃ R=Me, R ¹ =CH(OH)Me R=Et, R ¹ =CH(OH)Et R=CHMe ₂ , R ¹ = CH(OH)CMe ₂ R=Ph, R ¹ =CH(OH)CPh ₂	
R O O	R=p-Anisyl, R ₁ =CH(OH)C p-Anisyl	
R1-MgX R1=Ph. EtPr. But. p-Anisyl	H C R' C QCH	126
R=H R=OMe	R.R.=H. R.2=OH R=OMe, R.=H. R.2=OH R=H. R.1=Ph. R.2=OAc R=OMe, R.1=Ph. R.2=OH R=H. R.1=P-Anisyl, R.2=OAc R=OMe, R.1=P-Anisyl, R.2=OH R=H. R.1=Et. R.2=OH R=OMe, R.1=R.2=OH R=OMe, R.1=R.2=OH R=OMe, R.1=Pr. R.2=OH R=OMe, R.1=Pr. R.2=OH R=OMe, R.1=R.2=OH R=OMe, R.1=R.2=OH R=OMe, R.1=R.2=OH	
	R=H R =Pr R=OMe, R =Pr	

Table -4 Selected Examples of Grignard Reaction with Coumarins

Substrates	Products	Ref
Meo O O O	ArMgBr Meo H	126
R=H R=Me	Ar=Ph, R=H Ar= p-OMeC ₆ H ₄ , R=H	
	MeO Ar	
	R=H, Ar= Ph R=Me, Ar=Ph R=Me, Ar= p-OMeC H ₄	

Table -4 Selected Examples of Grignard Reaction with Coumarins

Substrates	Products	Ref
MeO — MgBr	MeO O O	127
R= H, R ¹ =Me R=Me, R ¹ =Me R=H, R ¹ = Ph R=Me, R ¹ = Ph	R= H, R ¹ =Me R=Me, R ¹ =Me R=H, R ¹ = Ph R=Me, R ¹ = Ph	
MeO PhMgBr Me	MeO Ph Ph	127
MeO Company Co	Et OH MeO OH CHCOEt	127
MeO PhMgBr O Me	PhC Me	127

Table-5 Selected Examples of Grignard Reaction with Coumarins

Substrates	Products	Ref
RMgX (R=Me, Ph)	RIMINA	103, 104
RMgX (R=Ph, CHMe ₂)	OH OR	105
RMgX (R=Me,Pr, Ph, allyl)	OH R R	105
RMgX (R=PhCl ₂ CH ₂ , i-Pr)	O O O	105
RMgX	OH R OH R R	106, 107
RMgX (R=Ph, p-Anisyl, napthyl)	OH R Me	108, 109

Ph RMgX R=Et, Me ₂ CH, Me ₃ C	O Ph	109
	o o o o o o o o o o o o o o o o o o o	
RMgX R=Me	Me Ph Me	110
0 0	OH Me Ph	
RMgX R=1-bromo napthalene	$ \begin{array}{c c} & & \\$	111
PhMgX CO ₂ Et	CO ₂ Et	112
	OH O Ph	

RMgX R=p-anisyl	CO ₂ Et R	113
RMgX (R=Me ₃ C)	CO ₂ Et R	114
OH OO RMgX R=Me	OH OH	115
R ¹ MgX	OH OH R2	115
R ¹ = Et, Me2CH, Cyclohexyl	OH OH R ¹	
R ¹ O RMgX R= Me,Ph	R ¹ O R R	115
RMgX R=o,m-anisyl	OH R OH R OH	116
RMgX R=p-anisyl	O R	117

Table-5 Selected Examples of Grignard Reaction with Coumarins

Substrates	Products	Ref
PhMgX X=Br	Ph Ph OH OH	118, 119
RMgX RMgX R=Ph,i-pr R=Ph	O O O O O O O O O O O O O O O O O O O	120
RMgX R=Me	O R R	121
Me O RMgX R=Me	Me O Me Me	122

BrCH ₂ (CH ₂)nCH ₂ CH ₂ MgBr	O (CH ₂)n	123
n=1,2 PhCH ₂ MgBr	OH O Ph	124
RMgX R=Me,Et,Ph,Me ₂ CH	O C(CH ₂) ₂	125